Do not approach munitions
under any circumstances
Country or territory where the image was reported

Reported Location (20)

Year the image is reported to have been taken

Year (17)

Classification groups of key explosive munitions used in conflicts

Munition Category (6)

The impact or effect the munition is intended to have

Functional use (8)

The specific model of munition pictured

Tentative Model (178)

Search

The external organisation that documented the munition

Research Organisation (5)

Colour of the munition pictured

Base Colour (10)

Colour of all, or some, of the markings on the munition

Marking Colour (9)

Language or script of the marking on a munition

Marking Script (9)

Condition of the munition pictured

Condition (6)

Key features defining the operation mechanisms of a projectile

Mechanical Feature (9)

Junctions where sections of a munition have been welded together
Welding Seams
Whether a munition is guided or unguided

Guidance (2)

Where the munition is launched from and what it targets

Domain (5)

The type of fins visible on the munition

Fins Characteristic (5)

The nominal diameter of a projectile. For most modern munitions, this is expressed in millimetres (e.g. 82 mm mortar projectile), but older artillery gun projectiles may be described in inches.

Calibre (51)

Weight class of the aerial bomb pictured

Weight Class (11)

58 results

Current Filter

Welding Seams
When referring to the body of a munition, these are the junctions where sections have been connected by one of a variety of methods of welding. When the munition suffers an impact or functions, the body will often separate along these seams.
OSMP859
Analyst Note:
The arming vane for a nose fuze (painted red) is visible on each of the two leftmost MAB-10B6 air-delivered bombs in this image. As the bomb falls, air passing over the arming vane causes it to spin, arming the fuze. (ARES)
OSMP647
Analyst Note:
The remnants shown in these linked images have been falsely identified in Russian sources as chemical munitions. This image clearly exhibits the marking “NBK DM 1216”—the ‘NBK’ standing for the German Nebelkörper (‘smoke element’)—identifying this as one of four DM 1216 hexachloroethane/zinc (HC) smoke elements dispensed by the German DM 105 155 mm artillery gun projectile. Video of the incident shows all four elements being ejected from the base of the projectile in flight. (ARES)
OSMP509
Analyst Note:
107mm spin-stabilized rockets of this design are often utilized by non-state actors in an indirect fire role. Like the original Chinese models that they are copied from, they do not require more than a simple electric power source and a rudimentary launch platform to achieve an acceptable level of accuracy. (ARES)
OSMP481
Analyst Note:
The M-54 ‘high-drag’ series of Soviet/Russian air-delivered bombs can be distinguished by two key identification features: 1.) the ballistic ring located in the forward portion of the bomb (missing in this example); and 2.) the presence of two or four rectangular, longitudinal ‘levelling bars’ (two can be seen in this example). (ARES)
OSMP483
Analyst Note:
Russian air-delivered cluster bombs, such as this one, are often named using a designation that is a compound of the names of the cargo (carrier) bomb and the submunition it carries. For example, this RBK-500 unguided, air-delivered cluster bomb carries 268 PTAB-1M HEAT submunitions, and is thus designated the 'RBK-500 PTAB-1M'. (ARES)
OSMP474
Analyst Note:
Cargo rockets often use an internal frame to manage the correct carriage and expulsion of submunitions. These internal frames frequently survive largely intact after the munition has functioned, and may be diagnostic in identifying a munition by type, series, or model. (ARES)